
1. In a LISP-based expert system, this stack must usually be simulated with a list. See Appendix
F for a CLIPS version of the Towers of Hanoi.

2. Matheus includes a fourth rule which places the original goal on the stack.
3. This number comes from Matheus, who seems to count only firings of rules (b) and (c); it is

used here for consistency with Matheus' reported results.
4. See Chapter 3 for an overview of threaded code, or (Kogge 1982) for a detailed treatment.

CHAPTER 5. EXPERT SYSTEM PERFORMANCE

5.1 The Benchmark Program

Expert system performance is generally measured in number of Logical Inferences per Second

(LIPS). Accurate measurement requires a test problem which involves a large number of inferences. One

such is the Towers of Hanoi, the classic problem of moving a stack of disks from one tower to another,

moving one disk at a time, and never putting a large disk above a small one. The expert system solution

involves only a three rules (Matheus 1986):

a) If the current goal is "move a tower of N disks," remove the current goal, and push three new

goals: move top disk to temporary location, move tower of N-1 disks, and move top disk from

temporary location.

b) If the current goal is "move tower of 1 disk," replace it with the goal "move disk."

c) If the current goal is "move disk," remove the goal and move the disk.

A "goal stack" keeps track of intermediate goals.1 These three rules2 will be evaluated repeatedly until the

problem is solved (the goal stack is empty). To solve an eight-disk problem, the system must fire 512

rules3 and make 255 moves.

5.2 Uniprocessor Performance

The expert system invented during this research (and described in Chapter 3) has been christened

TEXMEX -- Threaded EXecution Micro EXpert -- to emphasize that it compiles a rule network to

executable, threaded4 code, and that it can run on small ("micro") processors. Several versions of this

software were developed as the research progressed.

48

Figure 5-1 summarizes the performance of this system on a single processor. Data from FORPS,

the FORth Production System of (Matheus 1986), is included in this table for comparison.

49

1.0

0.5

0.2

0.1

2.0

5.0

500

5000

1000

2500

250

100

5010.0

486SX
33 MHz

386SX
33 MHz

286
12 MHz

68HC16
16 MHz
2 waits

68HC16
16 MHz
13 waits
(0.18)(0.58)(1.0)(3.1)(4.7)

PROCESSOR
(Relative Speed)

Inferences
per second

8-disk solution
time (seconds)

+

+

+

+
+

+

+

+
+

+
+

+
+

++

+
+

++

TEXMEX 3F

TEXMEX 3B

TEXMEX 4B/4F

TEXMEX 2B

FORPS

TEXMEX 1a
TEXMEX 1b

TEXMEX 1c

2B
2F 4B

4F

3F
3B

3F
3B

TEXMEX 2F

4B 4F

2B

4B 4F

Notes:
 TEXMEX 1a is Direct Threaded Code, with pruning; backward chaining only
 TEXMEX 1b is as 1a, with critical sections converted to machine code (hand optimized)
 TEXMEX 1c is as 1b, with an optimized goal stack (using Forth's data stack)
 TEXMEX 2, 3, and 4 are given for both forward (F) and backward (B) chaining
 Processor speed is given relative to a 12 MHz 80286, based on benchmark results

Figure 5-1. Towers of Hanoi Solution Times, One Processor

5. See Chapter 3, section 3.3.

TEXMEX 1, the first version of the expert system, was written in F83 for the IBM PC. It

performed backward chaining only, and compiled the rule network to direct threaded code. Three

successive refinements are shown in Figure 5-1. Variant (a) used rule memory and pruning5 to speed

evaluation. In (b), key rule subroutines and logical operators were rewritten in assembly language for

improved speed. Finally, (c) dispensed with the auxiliary stack used in the FORPS example to record

goals; instead, the Forth data stack was used.

TEXMEX 2, written in Pygmy Forth for the IBM PC, was the first version to allow backward

("/B") or forward ("/F") chaining. It was also the first version to use temporal algebra and expiration

times; this prevented "pruning" of the logic tree. This, plus the more complex logic of the inference

engine, made TEXMEX 2 about one-third as fast as the comparable TEXMEX 1a. Like TEXMEX 1,

rules were compiled to direct threaded code. No speed is lost by forward-chaining; indeed, it is slightly

faster than backward chaining.

TEXMEX 3, the first to operate on distributed processors, introduced the Inferencing Token

Language "ITL," and compiled rules to a tokenized program rather than direct-threaded code. It was

written in F-PC for the IBM PC, and MPE Forth for the 68HC16 microprocessor. The use of tokenized

code makes TEXMEX 3 roughly half the speed of TEXMEX 2.

TEXMEX 4 was the object-oriented implementation of TEXMEX 3. The token interpreter and

some key methods (e.g. assert, evaluate) were rewritten in assembly language for improved performance.

This regained the speed lost by TEXMEX 3; even though it still uses a tokenized representation,

TEXMEX 4 is slightly faster than TEXMEX 2.

TEXMEX 4 is also twice as fast as TEXMEX 3 on the 68HC16 processor. The speed of this

processor was tripled when its internal wait-state generator was reduced from 13 (the reset default) to 2

(the number actually required for the memory in use).

The "inferences per second" statistic was computed from the 8-disk problem. No one system was

50

6. Primarily because all of the early benchmarks used this processor.
7. Three processors of widely varying speeds were chosen to create a more demanding test of the

network communications software.
8. More likely, the inference engine is consuming only about two seconds, and network traffic is

taking 42 seconds (i.e., a network utilization of 86%).

evaluated on all processors; however, enough comparable tests were performed to allow a relative speed

metric to be computed for each CPU. These are shown at the bottom of Figure 5-1, with the 12 MHz

80286 arbitrarily6 used as the "reference" speed.

5.3 Distributed Performance

To test the performance of TEXMEX on a distributed system, a "worst case" test was devised.

The Towers of Hanoi problem was divided among three processors as follows:

1) The "tower expert" knows only how to move a tower (rules a and b).

2) The "disk expert" knows only how to move a disk (rule c).

3) The "goalkeeper" keeps track of the current goal (the goal stack).

Thus no processor can perform more than one inference before having to refer to another processor. This

is intended to maximize the amount of network traffic, and provide a pessimistic measure of system

performance. A "real" problem would be factored so as to minimize network traffic, so that each processor

could solve, unassisted, the largest possible subproblem.

Figure 5-2 summarizes the results of these tests.

Forward Chaining

At first glance, the reduced performance of the distributed expert system is striking. Using a

486SX/33 MHz, 386DX/16 MHz, and 8088/8 MHz,7 TEXMEX 3/F solves the 8-disk problem in 44.0

seconds (as compared with 0.353 seconds for the 486 alone). However, instrumenting the network reveals

that 2040 packets of 15 bytes each are sent in the solution of this problem. Since the division of tasks

ensures that no two sequential messages originate from the same processor, each packet is followed by a

two-byte token. In the best case (assuming no idle network time) this involves 34,680 bytes, or 36.13

seconds at 9.6 Kbaud. Thus the inference engine is consuming at most 12 seconds,8 as shown in the

51

52

0

20

40

60

80

100

120

140

16

12

27

12

44

36

70

33

140

99

minimum
network overhead

maximum
inferencing time

TEXMEX 4/F
Three 68HC16s

(2 waits)
28.8 Kbaud

TEXMEX 3/F
Three 68HC16s

(13 waits)
28.8 Kbaud

TEXMEX 3/F
486-386-XT
9.6 Kbaud

TEXMEX 3/B
Three 68HC16s

(13 waits)
28.8 Kbaud, P=1

TEXMEX 3/B
486-386-XT

9.6 Kbaud, P=4

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Figure 5-2. Towers of Hanoi Solution Times, Three Processors
(Eight disk problem)

9. A network utilization of 82% would account for this discrepancy.
10. A doubling of messages is expected because backward chaining requires two messages (ASK

and TELL) to transfer a new fact, while forward chaining requires only one (TELL).

middle column of Figure 5-2. Thus the limiting factor appears to be the network, a conclusion which is

confirmed by the tests at 28.8 Kbaud. The first column, for TEXMEX 4/F running on 68HC16s with two

wait states, shows a minimum message time of 12 seconds, and a maximum inferencing time of 4 seconds.

A single 68HC16 can solve this problem in 1.35 seconds. It is reasonable to assume that the "missing"

3.65 seconds are largely due to less-than-perfect network utilization.9

On the 68HC16s, TEXMEX 3/F (13 wait states) solved the 8-disk problem in 26.8 seconds, while

TEXMEX 4/F (2 wait states) took 16.6 seconds. This 10.2 second difference is comparable to the 8.6

second difference on a single 68HC16 (10.0 vs. 1.4 seconds). On a 68HC16 with 13 wait states, it appears

that about half the total solution time is consumed by inferencing and internal message processing. It

appears that the expert system will not be entirely network-limited on embedded processors. Raw CPU

performance is still a significant concern; especially if slower (e.g., 8-bit) CPUs are to be used.

Backward Chaining

The backward chaining solution was problematic, since in this case there is no way for one

processor to tell the others that a new goal is present. Instead, the tower and disk experts must wait for

their current goal to expire, upon which they will query the goalkeeper for a new goal. This expiration

time is critical: if too long, the system will spend time waiting idly. If too short, the experts may ask for a

new goal before a new goal is available, increasing network traffic with useless messages. Various values

of "persistence" time (given in 18.2 Hz clock ticks as "P" in Figure 5-2) were tried. With P=3, repeated 8-

disk trials required from 6337 to 7663 packets on the network. The number is more than the expected

double of the forward-chaining solution10, because the backward chaining system cannot use broadcast

messages to reduce traffic. The average message length is 13 bytes, plus two bytes for the token; assuming

the "best case" of 6337 packets to solve the problem, this represents a message passing overhead of 99

seconds at 9.6 Kbaud, or 33 seconds at 28.8 Kbaud.

53

Once more, the 68HC16 with 13 wait states spends about half of its time (about 37 seconds) on

internal processing. This compares with about 15 seconds for TEXMEX 3/F on the same hardware

configuration. Since the single-processor solution times were nearly identical for TEXMEX 3/B and

TEXMEX 3/F, it seems likely that the increase in "internal" processing is due to the larger number of

messages; that is, message processing (exclusive of inferencing) represents a significant load.

5.4 Comparison to Other Systems

Figure 5-3 compares the performance of the TEXMEX embedded expert system with several

other published and commercial packages.

54

240*

120*

81

51.4*

37.8*

16.6

2.31

1.42

1.36

0.96

0.404

0.258

0.251

Time (in seconds)
to solve 8 disks

MicroVAX II

VAX 11/780

486SX/33 MHz

68000/8 MHz

TI Explorer

three 68HC16s

68000/10 MHz

486SX/33 MHz

68HC16/16 MHz

80286/12 MHz

486SX/33 MHz

486SX/33 MHz

486SX/33 MHz

Processor

OPS5

OPS5

KAPPA PC

REAL-OPS

OPS5

TEXMEX 4/F

FORPS

CLIPS 5.1

TEXMEX 4/F

FORPS

FORPS

TEXMEX 4/B

TEXMEX 4/F

System

*this figure extrapolated from data supplied by (Dress, 1986).

Figure 5-3. Comparison of Expert Systems

11. (Matheus, 1986) estimates 0.7 ms per rule per inferencing cycle, thus a system with 700 rules
would perform approximately two inferences per second.

TEXMEX 4 running on a single processor is two to three orders of magnitude faster than the

LISP-based expert system shells, OPS5 and KAPPA, running on comparable hardware. Even the use of a

dedicated LISP processor (TI Explorer) does not accelerate OPS5 to one-hundredth of the speed of

TEXMEX. Not evident from this table is the fact that the resources required by the commercial expert

shells -- megabytes of RAM and a hard disk -- render them useless for embedded control.

The C Language Interactive Production System, CLIPS, is an example of the "state of the art" in

real-time expert systems. TEXMEX 4 is almost five times faster than CLIPS. Furthermore, CLIPS

requires the resources of a personal-computer: a demonstration CLIPS program compiled to over 155

kilobytes, far in excess of the memory available on an embedded microprocessor.

The only truly comparable system is the FORth language Production System, FORPS. This

expert system is well suited to resource-limited processors, and appears only slightly slower than

TEXMEX. But since FORPS does not create a network of rules, it must exhaustively search its rule base

on every rule firing, with the result that the inferencing speed is inversely proportional to the number of

rules defined.11 The Towers of Hanoi benchmark, having only four rules, is especially favorable to

FORPS; a "real" problem would run much more slowly.

5.5 Observations

The statistics quoted for TEXMEX in Figure 5-3 are for a system using a token interpreter. The

results obtained for TEXMEX 1 (Figure 5-1) indicate how much more speed is available by compiling to a

more efficient code representation (direct threaded code). Compiling directly to machine code would be

even faster. "Just in time" compilation gives the benefits of machine code with the portability of tokenized

code. The postfix token language ITL is well suited to this, since is can be quickly and easily compiled.

This is a promising area for future research.

It has been said that forward chaining is better than backward chaining for process control, since

process control is driven by the arrival of new data (e.g. from sensors). From this work, it can now be

55

added that forward chaining is also better for distributed inferencing, due to several aspects:

a) A new fact can be transferred with one network message rather than two.

b) A new fact can be broadcast to several CPUs with a single message.

c) Backward chaining requires that queries continually be sent to discover changes in a previously

"known" fact. If the query period is too short, the network will be cluttered with useless

messages. If the query period is too long, the new fact will not be discovered promptly, and the

effective inferencing speed is reduced.

Fortunately, the forward and backward chaining techniques devised in this project achieve equivalent

inferencing speeds. There is no incentive to use the "wrong" chaining method for the application when

real-time performance is critical.

56

