
APPENDIX B.  ASYNCHRONOUS TOKEN RING COMMUNICATIONS

B.1  Design Criteria for the Local Area Network

A fully distributed expert system implies some means for the individual experts to communicate -

- in brief, a local area network.  For this research, the network must meet the following goals:

a) Inexpensive.  It defeats the purpose of using inexpensive microcontrollers, if the network 

interface is expensive or requires custom logic.  Ideally, the network interface should require 

only the "standard" asynchronous serial port, and no external hardware.

b) Fiber optic capable.  A particle accelerator is an "electrically hostile" environment.  Also, it is 

desireable to place control microprocessors inside various high-voltage cages.  A network which 

can be carried on fiber optic cable is needed.

c) Open-ended.  The network should support a variable, and possibly large, number of stations.

d) Peer-to-peer.  The reasoning model is a "society of experts," each of whom is free to consult 

with, or advise, any other.  Thus peer-to-peer communication is essential.

e) Broadcast.  Frequently, one station must advise many, or all, stations of a change in some fact.  

The network must allow broadcast messages from any station.

f) Deterministic.  Deterministic protocols are preferred for real-time control, guaranteeing an upper 

bound on time for one station to access the net, and for a message to be sent.  Maximimizing the 

utilization of this low cost (and presumably low speed) network is also desirable.

B.2 Physical Topology

Three physical topologies were considered for the local area network: bus, star, and ring.

The physical bus is widely used.  It is open-ended and can be implemented on many embedded 

microcontrollers (Butler, 1991, 1992).   Deterministic protocols exist which support peer-to-peer and 

broadcast messages.  Its chief disadvantage is the difficulty of using fiber optic links.  While fiber optics 
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have been implemented (Tanenbaum 1989; Valenzano, Demartini, and Ciminiera 1992), for bussed local 

area networks, these installations require specialized bus transceivers which increase the cost.

A star topology, on the other hand, uses exclusively point-to-point links and is therefore readily 

adapted to fiber optic cable.  The remote stations can use common (and inexpensive) serial ports.  The 

"hub" of the network is the bottleneck: it requires many serial ports, and this ultimately places a limit on 

expansion.  The hub must also actively relay peer-to-peer and broadcast messages, and, without special 

hardware, this load increases with the number of serial ports.

Many advantages of phyiscal rings have been stated by (Tanenbaum 1989):

Among their many attractive features is the fact that a ring is not really a broadcast 
medium, but a collection of individual point-to-point links that happen to form a circle.  
Point-to-point links involve a well-understood and field-proven technology, and can run on 
twisted pair, coaxial cable, or fiber optics.  Ring engineering is almost entirely digital, 
whereas [IEEE Standard] 802.3, for example, has a substantial analog component for 
collision detection.  A ring is also fair and has a known upper bound on channel access.

A disadvantage frequently cited for physical rings is that, if one station on the ring fails, the 

entire ring fails.  This, however, can be an advantage in a control system: for the proper operation of the 

accelerator, all stations must be functioning.  If any station fails, safety requires that all stations enter their 

"safe" or shutdown mode.

The principal disadvantage of most ring networks is the requirement for specialized hardware.  

Inexpensive interfaces have long been available for rings such as the IBM Synchronous Data-Link Control 

(Intel, 1981; Motorola, 1983; Zilog, 1981).  Unfortunately, SDLC, a "logical star," does not support peer-

to-peer or broadcast messages.

 The IBM Token Ring, standardized as IEEE 802.5 (IEEE, 1985; Strole, 1987), is more 

promising.  This is a true peer-to-peer network in which ownership of the ring rotates among all of the 

stations on the ring.  Both group and broadcast addresses are supported.  The 802.5 protocol satisfies all of 

the functional requirements; unfortunately, it is a synchronous protocol requiring specialized interface 

hardware.  The ideal would be a protocol like 802.5, using standard asynchronous serial ports.
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B.3 The Token Ring Using Asynchronous Communications

Each computer in the Asynchronous Token Ring receives serial data from the "previous" station 

in the ring, and transmits to the "next" station in the ring.  Thus each station requires only one serial port.  

At any time, one station is the "owner" (master) of the ring, entitled to put data on the ring, and 

responsible for removing this data from the ring.  The other "listening" (slave) stations simply retransmit 

any data they receive.  Serial data bytes are originated by the owner, handed around the ring by the slaves, 

and consumed when they return to the master.  Each station in the ring introduces a delay of one byte 

period (rather than one bit period as in IEEE 802.5).

The ring owner transmits data in frames, using the format shown in Figure B-1.  The beginning 

of each frame is uniquely identified by a START code (0FF hex).  All listening stations interpret a START 

code, regardless of when received, to mean the beginning of a new frame.  A frame can be aborted by 

simply sending a new frame.

The destination address byte may designate a specific recipient, or "broadcast" (00 hex).  The 

station(s) designated must validate the frame, and if possible, receive it.   Stations which do not recognize 

this address may return to passively "echoing" received bytes, while awaiting another START code.  

Nonaddressed stations need not buffer any of the frame: they can reject the frame immediately.

To simplify the logic of the software state machine, a message length byte is sent next.  This is 
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the length of the data field, from 0 to 63 bytes.  This is followed by the source address byte and the data 

field.  During the transmission of the data field, reserved codes (such as START) are sent using "character 

stuffing" (Tanenbaum, 1989).  The special code STUFF (0FD hex) is sent, followed by the data byte XOR 

80h.  This is transparent to the user and does not affect the transmitted length byte.

Following the data field, an FCS byte (Frame Check Sequence) is sent.  This is the two's 

complement of the binary checksum over the destination, length, source, and data fields.

The acknowledge byte is sent after the checksum so that it may be modified by listening stations 

as they pass the frame around the ring.  Each station which recognizes the destination address, whether or 

not it copies the message, increments the 6-bit "#stations" field.  When this byte completes its trip around 

the ring, the sender can discover missing stations, duplicate station addresses, or (in the case of broadcast 

messages) the total number of stations on the ring.  The "B" bit is set by any recipient which was unable to 

copy the message due to lack of buffer space.  The "E" bit is set by any recipient which detects a checksum 

error in the frame.  Thus the sender can determine if the frame needs to be resent.  In the case of broadcast 

messages, these bits indicate that at least one recipient failed to receive the frame.

Since the ring is limited to 63 stations, the #stations field can only be incremented to 62, and the 

acknowledge byte can never be modified into any of the four reserved codes (0FC to 0FF hex).

When the ring owner is finished sending frames, it passes ownership to the next station in the 

ring with the two-byte sequence START TOKEN (0FF, 0FE hex).  Using two bytes reduces the likelihood 

that a bit error will generate a spurious token.  The station receiving the token may then assume 

ownership and begin transmitting frames, or, if it has no frames to transmit, will pass the token to its 

successor.  When the ring is idle, the sequence START TOKEN continuously circulates, awaiting capture 

by the first station with data to send.

The Asynchronous Token Ring is managed by an interrupt-driven state machine in each 

processor.  This software performs the functions of the IEEE Medium Access Control (MAC) sublayer.  

Unlike the 802.5 system, the failure of any processor will halt the flow of data around the ring.  This was 
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deemed an acceptable compromise in order to use low-cost microprocessor hardware for the stations.

Figure B-2 illustrates the state machine for a listening station.  All received bytes are 

retransmitted (except the ACK byte which may be modified before being resent).  No data is added to or 

removed from the ring.  Receive data for this station [2] is stored if a buffer is available; otherwise it is 

discarded, and the B bit is set in the ACK byte.  Character stuffing is handled within the RxDATA state 
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[3], using an auxiliary state variable.

The state machine for a transmitting station (the ring owner) is much simpler, since it must 

merely put a frame as shown in Figure B-1 on the ring.  As shown in Figure B-3, if no frame is waiting to 

be sent, the transmit state machine sends the token sequence, and then turns itself off.  It will be restarted 

by the receive state machine when a token is received.

While the transmit state machine is placing data on the ring, a parallel state machine (Figure B-
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4) removes the data from the ring and compares it to the transmitted data.  This "verify" operation cannot 

be performed synchronously with the transmission, because of the variable and unknown delay for bytes to 

transit the ring.  The verify state machine is essentially identical to the receive state machine, with the 

following significant differences.  Received bytes are consumed instead of being echoed (thus removing 

the bytes that were placed on the ring by the transmit state machine).  Received bytes are not stored; 
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instead, they are compared with the transmit buffer.  If a mismatch is detected, the buffer is flagged with a 

"verify" error.  Receipt of a START code during the frame will abort the verify, and flag the buffer with an 

"abort" error.  Finally, all bytes preceding the START code are consumed: as will be seen shortly, this is 

the mechanism by which the ring is purged of spurious data.

Only one frame may be on the ring at any time.  Once a frame has been sent, the sender must 

wait for that frame to be verified before sending the next frame (or passing the token).  This decreases ring 

utilization; in a ring with five stations, an idle time of five byte periods will occur between frames.  The 

advantage is a great simplification of the verify logic.  More importantly, an idle period is needed to 

recover from asynchronous framing errors.

B.4  Error Handling and Ring Supervision

Most bit errors will.result in a garbled byte of data.  Single-bit errors and many multiple-bit 

errors in the destination, length, source, or data field will be identified by the checksum.  The receiving 

station will discard the frame, and report the error to the sending station through the E bit of the 

acknowledge byte.  (In addition, all multiple-bit errors will be detected by the verify logic.)

Bit errors in the length field will change the apparent length of the frame.  It is extremely 

unlikely that the result will be a valid frame, but the erroneous length may lead to other problems.  If the 

length is decreased by the error, the tail of the frame will appear to be spurious data on the ring.  If the 

length is increased, a complete frame will never be seen.  Recovery from both of these conditions will be 

discussed below.  A length increase could also cause a buffer overflow; to prevent this, the receive state 

machine always limits the length to the maximum buffer size (63 bytes of data).

Bit errors in the START byte will prevent the receiving stations from recognizing the frame.  A 

bit error which creates a spurious START code will convert one valid frame into two invalid frames, both 

of which will be rejected.

Bit errors in the TOKEN byte can cause the loss of the token, discussed below.  An erroneous 

TOKEN code in the middle of a frame will be ignored (treated as bad data).  Only a multiple-bit error in 
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the destination address field can create a spurious token.  Should this happen, two stations may begin 

putting frames on the ring.  It is conceivable that each station will exactly consume the other's frames 

(causing both stations to see verify errors).  But eventually, one station will pass the TOKEN before the 

other.  TOKENs are simply consumed by the verify state machine, since any station running the verify 

state machine already considers itself the ring owner.  Thus the spurious TOKEN will be destroyed, and 

normal operation will resume.

Bit errors in the acknowledge byte are an unresolved problem.  If a single-bit error clears the E or 

B bits, the transmitting station may incorrectly conclude that the frame was successfully received.  (In the 

IEEE 802.5 protocol, this problem was addressed by sending the flag bits twice.)  This will be a subject for 

future development.

Unlike IEEE 802.5 (and other bit synchronous systems), a garbled bit in an asynchronous ring 

can cause the apparent loss of a byte, or the addition of a spurious byte.  Also, the corruption of a start bit 

can cause a loss of byte synchronization (continuous framing errors); this is handled by requiring each 

frame to "clear" the ring before another frame may be placed on the ring.

A spurious byte may occur before a frame, within a frame, or after a frame.  Spurious bytes 

preceding a frame will be removed by the verify state machine, while it waits for a valid START code.  

Spurious bytes following a frame will appear to be spurious bytes preceding the next frame, and will 

likewise be removed.  Note that even spurious bytes preceding the START TOKEN sequence will 

eventually appear as bytes preceding a frame.  Thus by requiring the verify state machine to discard 

invalid START bytes, the ring is regularly purged.

A spurious byte inserted within a frame will corrupt the remainder of the frame and increase its 

length by one, appearing to the listening stations as corrupted data followed by a spurious byte.  The frame 

will be flagged as erroneous, and the "appended" byte will be discarded as just described.

"Lost" data bytes are a difficult problem.  If a data byte is lost around the ring, the verify state 

machine never sees a completed frame.  Since it must remove the entire frame from the ring before 
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1. Three ticks of the 18.2 Hz system clock.  If the first clock tick occurs immediately after the 
verify engine starts, the second tick could be seen in as little as 55 msec.  At 9600 baud, each station adds 
a minimum delay of 1 msec.  Thus a network of 55 stations could cause a false timeout, if the counter was 
set to two clock ticks.

2. Seven ticks of the 18.2 Hz clock.  This timeout delay is a compromise.  If too long, the network 
can go "down" for an excessively long period.  If too short, heavy traffic on the network (each station 
sending packets before passing the token) can cause spurious timeouts.  Further research may yield a more 
satisfactory solution to this problem.

sending the next frame or passing the token, the ring will halt.  This problem is addressed by a timeout 

counter.  If the ring owner sees no receive (verify) data for 165 msec,1 it declares that frame to be "timed 

out."  The frame is flagged as unsuccessfully sent due to a timeout error, and the owner proceeds to send 

the next message or pass the token.  Receiving stations awaiting completion of the frame will be reset by 

the START code of the new message or token.

It is also possible to lose the token, especially during idle periods when the token is circulating 

continuously on the ring.  When this happens, the station sending the token sees that the token has been 

passed, and considers itself no longer the ring owner.  But no station receives the token to become the new 

owner.  If the token was garbled, the result is a ring of slaves endlessly circulating a nonsense byte.  To 

handle this problem, one station is designated the "supervisor" of the ring.  It monitors the ring constantly 

for the presence of a token.  If 385 msec2 elapses without a token being seen, it declares a "supervisor 

timeout" and generates a new token to be placed on the ring.  The "non supervisor" stations also detect the 

loss of token; however, their action is merely to set a "slave timeout" flag.  This flag may be used by 

higher level software to detect network failure.

Station number 01 is designated the supervisor.  This is appropriate for this application, where 

the ring consists of several embedded controllers plus one PC as an operator's station.  A second PC may 

be installed as a "monitor" station, to passively observe and tabulate ring traffic.

B.5  Broadcast Protocols

The handling of broadcast messages was a particular goal in the design of the Asynchronous 

Token Ring.  A major advantage of physical ring protocols like IEEE 802.5 is the inherent ability to 

acknowledge a broadcast message, since every station may modify the acknowledge byte.

111



3. The Inferencing Token Language is described in Chapter 3.

IEEE 802.5 allows each station to flag "address recognized" and "frame copied" (successfully 

received).  For this application, it is more useful to indicate "frame not copied."  In the case of a broadcast 

message, any station may set this bit; when the sender sees this bit set, it knows that at least one station 

failed to copy the message, and a retransmission is required.  The acknowledgement differentiates between 

messages which must be resent due to data errors (the E bit), and due to the lack of a receive buffer (the B 

bit).

An innovation here is the use of an address-recognized count, rather than a single bit.  For 

messages to a single destination, this count will be returned to the sender as either 0 (address not 

recognized), or 1 (address recognized).  For broadcast messages, the count is the number of stations 

recognizing the broadcast address (regardless of whether they successfully copied the message).  If the 

sender knows the number of stations on the ring, it can detect whether any station failed to recognize the 

message.

The Asynchronous Token Ring essentially provides an "acknowledged datagram" service 

(Tanenbaum, 1989).  This is a "connectionless" service which does not guarantee message sequence, but 

does indicate successful receipt.  Two kinds of message delivery can be offered to the application.  "At 

most once" transmits the message only once.  No destination will receive a duplicate of the message, but 

some destinations may fail to receive it at all.  "At least once" delivery retransmits the message until it is 

succesfully received by all addressed destinations (the E and B bits return clear, and the message verifies 

successfully).  Every destination receives the message, but some may receive duplicate copies.  Rejection of 

duplicate messages is handled at a higher protocol layer.

B.6  Message Interpretation

It became necessary to write the received-message processing software, before the content of 

received messages was finalized.  To do this, an "open ended" message format was devised.  Each data 

field is a statement in the tokenized ITL3 language.  When the token ring state machine receives a valid 
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message, it is passed to the ITL interpreter.  Some ITL tokens are defined specifically for message 

processing (see Appendix D); others -- such as ASK and TELL -- represent network-related actions which 

must be taken by the processor.  Since new tokens can be added to the ITL language at any time, this 

provides a very flexible message processing mechanism.

This approach allowed a simple method to reject duplicate messages.  The SEQUENCE token 

and a sequence number are placed by the sender at the beginning of a message.  This token has the 

following action: if the sequence number matches the last sequence number received from this sender, 

terminate ITL processing, ignoring the rest of the message.  The sender increments the sequence number 

for each new message to the same destination.  The guaranteed delivery of the "at least once" service 

ensures that sequence numbers will not be skipped.

This also allows sequencing of broadcast messages.  Each sender maintains a distinct "outgoing" 

sequence number for broadcasts.  Each recipient of the broadcast message, upon encountering the 

SEQUENCE token, compares the sequence number to that of the last broadcast message from that sender.  

Thus each station maintains two "incoming" sequence numbers for each possible sender: one for point-to-

point messages, and one for broadcast.

B.7  Future Work

Several refinements of the protocol are possible.  The implementation of the acknowledge byte is 

weak; it should be sent redundantly (as in 802.5) or with an error-check code (such as a parity bit).   With 

the current acknowledge format, only 64 of the 252 valid station addresses can be used   Some of the 

remaining 188 could be used for group addresses.  Also, the maximum message length could be increased 

from 63 to 251, although in this case a better frame check sequence would be advisable.

At present, one station (the supervisor) is crucial to ring operation.  It would be better if any 

station could assume the role of ring supervisor, as in IEEE 802.5.

The current network uses RS-232 links, star-wired to a passive hub -- that is, serial cables from 

each station are brought to a central switchbox.  This allows any station to be manually bypassed.  An 
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electronic switch that automatically bypasses any inactive station would let the ring recover from a "dead" 

CPU.

The potential of "active" messages which are executed by an interpreter has yet to be explored.  

Use of the ITL interpreter opens the possibility of distributed execution of ITL language -- processors 

sending logic expressions and even entire subprograms to other processors over the network, where they 

are executed to produce similar "return" messages.
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